Show all

2024

The wetting of H$_2$O by CO$_2$

Samuel G. H. Brookes, Venkat Kapil, Christoph Schran, Angelos Michaelides

The wetting of H$_2$O by CO$_2$ Journal Article

In: J. Chem. Phys., vol. 161, no. 8, pp. 084711, 2024, ISSN: 10897690.

Abstract | Links | BibTeX | Tags: Machine Learning Potentials, Water, Water at Interfaces

Quasi-one-dimensional hydrogen bonding in nanoconfined ice

Pavan Ravindra, Xavier R. Advincula, Christoph Schran, Angelos Michaelides, Venkat Kapil

Quasi-one-dimensional hydrogen bonding in nanoconfined ice Journal Article

In: Nat. Commun., vol. 15, no. 1, pp. 1–9, 2024, ISSN: 20411723.

Abstract | Links | BibTeX | Tags: Confinement, Hydrogen bonding, Machine Learning Potentials, Water

Origin of dielectric polarization suppression in confined water from first principles

Thomas Dufils, Christoph Schran, Ji Chen, Andre K. Geim, Laura Fumagalli, Angelos Michaelides

Origin of dielectric polarization suppression in confined water from first principles Journal Article

In: Chem. Sci., vol. 15, iss. 2, pp. 516–527, 2024.

Abstract | Links | BibTeX | Tags: AIMD, Confinement, Hydrogen bonding, Water

2023

Onset of Rotational Decoupling for a Molecular Ion Solvated in Helium: From Tags to Rings and Shells

Julia A. Davies, Christoph Schran, Fabien Brieuc, Dominik Marx, Andrew M. Ellis

Onset of Rotational Decoupling for a Molecular Ion Solvated in Helium: From Tags to Rings and Shells Journal Article

In: Phys. Rev. Lett., vol. 130, iss. 8, pp. 083001, 2023.

Links | BibTeX | Tags: Nuclear quantum effects, path integral molecular dynamics (PIMD), Superfluidity, Water

2022

The first-principles phase diagram of monolayer nanoconfined water

Venkat Kapil, Christoph Schran, Andrea Zen, Ji Chen, Chris J. Pickard, Angelos Michaelides

The first-principles phase diagram of monolayer nanoconfined water Journal Article

In: Nature, vol. 609, pp. 512-516, 2022, ISSN: 1476-4687.

Abstract | Links | BibTeX | Tags: Confinement, Machine Learning Potentials, Water

Neural Network Interaction Potentials for para-Hydrogen with Flexible Molecules

Laura Durán Caballero, Christoph Schran, Fabien Brieuc, Dominik Marx

Neural Network Interaction Potentials for para-Hydrogen with Flexible Molecules Journal Article

In: J. Chem. Phys., vol. 157, no. 7, pp. 074302, 2022, ISSN: 0021-9606.

Abstract | Links | BibTeX | Tags: Machine Learning Potentials, Nuclear quantum effects, Superfluidity, Water

Infrared spectra at coupled cluster accuracy from neural network representations

Richard Beckmann, Fabien Brieuc, Christoph Schran, Dominik Marx

Infrared spectra at coupled cluster accuracy from neural network representations Journal Article

In: J. Chem. Theory Comput., 2022, ISSN: 1549-9618.

Abstract | Links | BibTeX | Tags: Coupled Cluster, Machine Learning Potentials, Spectra, Water

State-resolved infrared spectrum of the protonated water dimer: Revisiting the characteristic proton transfer doublet peak

Henrik R Larsson, Markus Schröder, Richard Beckmann, Fabien Brieuc, Christoph Schran, Dominik Marx, Oriol Vendrell

State-resolved infrared spectrum of the protonated water dimer: Revisiting the characteristic proton transfer doublet peak Journal Article

In: Chem. Sci., 2022, ISSN: 2041-6539.

Abstract | Links | BibTeX | Tags: Quantum Dynamics, Spectra, Water

2021

Machine learning potentials for complex aqueous systems made simple

Christoph Schran, Fabian L. Thiemann, Patrick Rowe, Erich A. Müller, Ondrej Marsalek, Angelos Michaelides

Machine learning potentials for complex aqueous systems made simple Journal Article

In: Proc. Natl. Acad. Sci., vol. 118, no. 38, pp. e2110077118, 2021, ISSN: 0027-8424.

Abstract | Links | BibTeX | Tags: Confinement, Ions in Water, Machine Learning Potentials, Water, Water at Interfaces

Transferability of machine learning potentials: Protonated water neural network potential applied to the protonated water hexamer

Christoph Schran, Fabien Brieuc, Dominik Marx

Transferability of machine learning potentials: Protonated water neural network potential applied to the protonated water hexamer Journal Article

In: J. Chem. Phys., vol. 154, no. 5, pp. 051101, 2021, ISSN: 10897690.

Abstract | Links | BibTeX | Tags: Coupled Cluster, Hydrogen bonding, Machine Learning Potentials, Water

2020

Committee neural network potentials control generalization errors and enable active learning

Christoph Schran, Krystof Brezina, Ondrej Marsalek

Committee neural network potentials control generalization errors and enable active learning Journal Article

In: J. Chem. Phys., vol. 153, no. 10, pp. 104105, 2020, ISSN: 10897690.

Abstract | Links | BibTeX | Tags: Machine Learning Potentials, path integral molecular dynamics (PIMD), Water

Automated Fitting of Neural Network Potentials at Coupled Cluster Accuracy: Protonated Water Clusters as Testing Ground

Christoph Schran, Jörg Behler, Dominik Marx

Automated Fitting of Neural Network Potentials at Coupled Cluster Accuracy: Protonated Water Clusters as Testing Ground Journal Article

In: J. Chem. Theory Comput., vol. 16, no. 1, pp. 88–99, 2020, ISSN: 15499626.

Abstract | Links | BibTeX | Tags: Coupled Cluster, Hydrogen bonding, Machine Learning Potentials, Water

2019

Quantum nature of the hydrogen bond from ambient conditions down to ultra-low temperatures

Christoph Schran, Dominik Marx

Quantum nature of the hydrogen bond from ambient conditions down to ultra-low temperatures Journal Article

In: Phys. Chem. Chem. Phys., vol. 21, no. 45, pp. 24967–24975, 2019, ISSN: 14639076.

Abstract | Links | BibTeX | Tags: Hydrogen bonding, Nuclear quantum effects, path integral molecular dynamics (PIMD), Water

2018

Converged Colored Noise Path Integral Molecular Dynamics Study of the Zundel Cation Down to Ultralow Temperatures at Coupled Cluster Accuracy

Christoph Schran, Fabien Brieuc, Dominik Marx

Converged Colored Noise Path Integral Molecular Dynamics Study of the Zundel Cation Down to Ultralow Temperatures at Coupled Cluster Accuracy Journal Article

In: J. Chem. Theory Comput., vol. 14, no. 10, pp. 5068–5078, 2018, ISSN: 15499626.

Abstract | Links | BibTeX | Tags: Nuclear quantum effects, path integral molecular dynamics (PIMD), Water

High-dimensional neural network potentials for solvation: The case of protonated water clusters in helium

Christoph Schran, Felix Uhl, Jörg Behler, Dominik Marx

High-dimensional neural network potentials for solvation: The case of protonated water clusters in helium Journal Article

In: J. Chem. Phys., vol. 148, no. 10, pp. 102310, 2018, ISSN: 00219606.

Abstract | Links | BibTeX | Tags: Machine Learning Potentials, Nuclear quantum effects, Superfluidity, Water

2017

Unravelling the influence of quantum proton delocalization on electronic charge transfer through the hydrogen bond

Christoph Schran, Ondrej Marsalek, Thomas E. Markland

Unravelling the influence of quantum proton delocalization on electronic charge transfer through the hydrogen bond Journal Article

In: Chem. Phys. Lett., vol. 678, pp. 289–295, 2017, ISSN: 00092614.

Abstract | Links | BibTeX | Tags: Charge transfer, Hydrogen bonding, Ions in Water, Nuclear quantum effects, Water

2016

Correlated Particle Motion and THz Spectral Response of Supercritical Water

Maciej Śmiechowski, Christoph Schran, Harald Forbert, Dominik Marx

Correlated Particle Motion and THz Spectral Response of Supercritical Water Journal Article

In: Phys. Rev. Lett., vol. 116, no. 2, 2016, ISSN: 10797114.

Abstract | Links | BibTeX | Tags: Hydrogen bonding, Spectra, Water